References

Basic methodology and program organization is described in detail in:

Egbert, G.D. and Kelbert, A., 2012. Computational recipes for electromagnetic inverse problems. Geophysical Journal International, 189(1), pp.251-267.

Kelbert, A., Meqbel, N., Egbert, G.D. and Tandon, K., 2014. ModEM: A modular system for inversion of electromagnetic geophysical data. Computers & Geosciences, 66, pp.40-53.


Some extensions and improvements are described in:

Tietze, K., Ritter, O. and Egbert, G.D., 2015. 3-D joint inversion of the magnetotelluric phase tensor and vertical magnetic transfer functions. Geophysical Journal International, 203(2), pp.1128-1148.

Dong, H. and Egbert, G.D., 2019. Divergence-free solutions to electromagnetic forward and adjoint problems: a regularization approach. Geophysical Journal International, 216(2), pp.906-918.

Cherevatova, M., Egbert, G.D. and Smirnov, M.Y., 2018. A multi-resolution approach to electromagnetic modelling. Geophysical Journal International, 214(1), pp.656-671.


A sample of published applications using ModEM:

Meqbel, N.M., Egbert, G.D., Wannamaker, P.E., Kelbert, A. and Schultz, A., 2014. Deep electrical resistivity structure of the northwestern US derived from 3-D inversion of USArray magnetotelluric data. Earth and Planetary Science Letters, 402, pp.290-304.

Tietze, K. and Ritter, O., 2013. Three-dimensional magnetotelluric inversion in practice—the electrical conductivity structure of the San Andreas Fault in Central California. Geophysical Journal International, 195(1), pp.130-147.

Kelbert, A., Egbert, G.D. and deGroot-Hedlin, C., 2012. Crust and upper mantle electrical conductivity beneath the Yellowstone Hotspot Track. Geology, 40(5), pp.447-450.

Yang, B., Egbert, G.D., Kelbert, A. and Meqbel, N.M., 2015. Three-dimensional electrical resistivity of the north-central USA from EarthScope long period magnetotelluric data. Earth and Planetary Science Letters, 422, pp.87-93.

Zhang, H., Huang, Q., Zhao, G., Guo, Z. and Chen, Y.J., 2016. Three-dimensional conductivity model of crust and uppermost mantle at the northern Trans North China Orogen: Evidence for a mantle source of Datong volcanoes. Earth and Planetary Science Letters, 453, pp.182-192.

Saß, P., Ritter, O., Ratschbacher, L., Tympel, J., Matiukov, V.E., Rybin, A.K. and Batalev, V.Y., 2014. Resistivity structure underneath the Pamir and southern Tian Shan. Geophysical Journal International, 198(1), pp.564-579.

Bedrosian, P.A. and Feucht, D.W., 2014. Structure and tectonics of the northwestern United States from EarthScope USArray magnetotelluric data. Earth and Planetary Science Letters, 402, pp.275-289.

Bedrosian, P.A., Peacock, J.R., Bowles-Martinez, E., Schultz, A. and Hill, G.J., 2018. Crustal inheritance and a top-down control on arc magmatism at Mount St Helens. Nature Geoscience, 11(11), pp.865-870.

Robertson, K., Heinson, G. and Thiel, S., 2016. Lithospheric reworking at the Proterozoic–Phanerozoic transition of Australia imaged using AusLAMP Magnetotelluric data. Earth and Planetary Science Letters, 452, pp.27-35.

Cai, J., Chen, X., Xu, X., Tang, J., Wang, L., Guo, C., Han, B. and Dong, Z., 2017. Rupture mechanism and seismotectonics of the Ms6. 5 Ludian earthquake inferred from three‐dimensional magnetotelluric imaging. Geophysical Research Letters, 44(3), pp.1275-1285.

Samrock, F., Kuvshinov, A., Bakker, J., Jackson, A. and Fisseha, S., 2015. 3-D analysis and interpretation of magnetotelluric data from the Aluto-Langano geothermal field, Ethiopia. Geophysical Journal International, 202(3), pp.1923-1948.

Piña-Varas, P., Ledo, J., Queralt, P., Marcuello, A., Bellmunt, F., Hidalgo, R. and Messeiller, M., 2014. 3-D magnetotelluric exploration of Tenerife geothermal system (Canary Islands, Spain). Surveys in Geophysics, 35(4), pp.1045-1064.

Khoza, T.D., Jones, A.G., Muller, M.R., Evans, R.L., Miensopust, M.P. and Webb, S.J., 2013. Lithospheric structure of an Archean craton and adjacent mobile belt revealed from 2‐D and 3‐D inversion of magnetotelluric data: Example from southern Congo craton in northern Namibia. Journal of Geophysical Research: Solid Earth, 118(8), pp.4378-4397.

Khoza, D., Jones, A.G., Muller, M.R., Evans, R.L., Webb, S.J. and Miensopust, M., 2013. Tectonic model of the Limpopo belt: Constraints from magnetotelluric data. Precambrian Research, 226, pp.143-156.

Cordell, D., Unsworth, M.J. and Díaz, D., 2018. Imaging the Laguna del Maule Volcanic Field, central Chile using magnetotellurics: Evidence for crustal melt regions laterally-offset from surface vents and lava flows. Earth and Planetary Science Letters, 488, pp.168-180.

Dong, H., Wei, W., Jin, S., Ye, G., Zhang, L., Yin, Y., Xie, C. and Jones, A.G., 2016. Extensional extrusion: Insights into south-eastward expansion of Tibetan Plateau from magnetotelluric array data. Earth and Planetary Science Letters, 454, pp.78-85.

Murphy, B.S. and Egbert, G.D., 2017. Electrical conductivity structure of southeastern North America: Implications for lithospheric architecture and Appalachian topographic rejuvenation. Earth and Planetary Science Letters, 462, pp.66-75.

Gao, J., Zhang, H., Zhang, S., Chen, X., Cheng, Z., Jia, X., Li, S., Fu, L., Gao, L. and Xin, H., 2018. Three-dimensional magnetotelluric imaging of the geothermal system beneath the Gonghe Basin, Northeast Tibetan Plateau. Geothermics, 76, pp.15-25.

Peacock, J.R., Mangan, M.T., McPhee, D. and Wannamaker, P.E., 2016. Three‐dimensional electrical resistivity model of the hydrothermal system in Long Valley Caldera, California, from magnetotellurics. Geophysical Research Letters, 43(15), pp.7953-7962.

Ye, T., Huang, Q., Chen, X., Zhang, H., Chen, Y.J., Zhao, L. and Zhang, Y., 2018. Magma chamber and crustal channel flow structures in the Tengchong volcano area from 3‐D MT inversion at the intracontinental block boundary southeast of the Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 123(12), pp.11-112.

Finn, C.A., Bedrosian, P.A., Cole, J.C., Khoza, T.D. and Webb, S.J., 2015. Mapping the 3D extent of the Northern Lobe of the Bushveld layered mafic intrusion from geophysical data. Precambrian Research, 268, pp.279-294.

Xu, Y., Yang, B., Zhang, S., Liu, Y., Zhu, L., Huang, R., Chen, C., Li, Y. and Luo, Y., 2016. Magnetotelluric imaging of a fossil paleozoic intraoceanic subduction zone in western Junggar, NW China. Journal of Geophysical Research: Solid Earth, 121(6), pp.4103-4117.

Peacock, J.R., Mangan, M.T., McPhee, D. and Ponce, D.A., 2015. Imaging the magmatic system of Mono Basin, California, with magnetotellurics in three dimensions. Journal of Geophysical Research: Solid Earth, 120(11), pp.7273-7289.

Araya Vargas, J., Meqbel, N.M., Ritter, O., Brasse, H., Weckmann, U., Yáñez, G. and Godoy, B., 2019. Fluid distribution in the Central Andes subduction zone imaged with magnetotellurics. Journal of Geophysical Research: Solid Earth, 124(4), pp.4017-4034.

Xu, Y., Zhang, S., Griffin, W.L., Yang, Y., Yang, B., Luo, Y., Zhu, L., Afonso, J.C. and Lei, B., 2016. How did the Dabie Orogen collapse? Insights from 3‐D magnetotelluric imaging of profile data. Journal of Geophysical Research: Solid Earth, 121(7), pp.5169-5185.

Padilha, A.L., Vitorello, Í., Pádua, M.B. and Fuck, R.A., 2016. Deep magnetotelluric signatures of the early Neoproterozoic Cariris Velhos tectonic event within the Transversal sub-province of the Borborema Province, NE Brazil. Precambrian Research, 275, pp.70-83.

Ogaya, X., Queralt, P., Ledo, J., Marcuello, Á. and Jones, A.G., 2014. Geoelectrical baseline model of the subsurface of the Hontomín site (Spain) for CO2 geological storage in a deep saline aquifer: A 3D magnetotelluric characterisation. International Journal of Greenhouse Gas Control, 27, pp.120-138.

Padilha, A.L., Vitorello, Í., Antunes, C.E. and Pádua, M.B., 2015. Imaging three‐dimensional crustal conductivity structures reflecting continental flood basalt effects hidden beneath thick intracratonic sedimentary basin. Journal of Geophysical Research: Solid Earth, 120(7), pp.4702-4719.

Kühn, C., Küster, J. and Brasse, H., 2014. Three-dimensional inversion of magnetotelluric data from the Central Andean continental margin. Earth, Planets and Space, 66(1), pp.1-13.

Meqbel, N., Weckmann, U., Muñoz, G. and Ritter, O., 2016. Crustal metamorphic fluid flux beneath the Dead Sea Basin: constraints from 2-D and 3-D magnetotelluric modelling. Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society, 207(3), pp.1609-1629.

Bedrosian, P.A., 2016. Making it and breaking it in the Midwest: Continental assembly and rifting from modeling of EarthScope magnetotelluric data. Precambrian Research, 278, pp.337-361.

Bedrosian, P.A. and Finn, C.A., 2021. When Wyoming Became Superior: Oblique Convergence Along the Southern Trans‐Hudson Orogen. Geophysical Research Letters, 48(13), p.e2021GL092970.

Xie, C., Jin, S., Wei, W., Ye, G., Jing, J., Zhang, L., Dong, H., Yin, Y., Wang, G. and Xia, R., 2016. Crustal electrical structures and deep processes of the eastern Lhasa terrane in the south Tibetan plateau as revealed by magnetotelluric data. Tectonophysics, 675, pp.168-180.

LI, C.J., BAI, D.H., XUE, S., LI, X., MA, X.B., YAN, Y.L. and KONG, X.R., 2017. A magnetotelluric study of the deep electric structure beneath the Ordos Block. Chinese Journal of Geophysics, 60(5), pp.1788-1799.

Xu, S., Unsworth, M.J., Hu, X. and Mooney, W.D., 2019. Magnetotelluric evidence for asymmetric simple shear extension and lithospheric thinning in South China. Journal of Geophysical Research: Solid Earth, 124(1), pp.104-124.

LI, C.J., BAI, D.H., XUE, S., LI, X., MA, X.B., YAN, Y.L. and KONG, X.R., 2017. A magnetotelluric study of the deep electric structure beneath the Ordos Block. Chinese Journal of Geophysics, 60(5), pp.1788-1799.

Kapinos, G., Montahaei, M., Meqbel, N. and Brasse, H., 2016. Three-dimensional electrical resistivity image of the South-Central Chilean subduction zone. Tectonophysics, 666, pp.76-89.

Lee, B., Unsworth, M., Árnason, K. and Cordell, D., 2020. Imaging the magmatic system beneath the Krafla geothermal field, Iceland: a new 3-D electrical resistivity model from inversion of magnetotelluric data. Geophysical Journal International, 220(1), pp.541-567.

Bologna, M.D.S., Dragone, G.N., Muzio, R., Peel, E., Nuñez‐Demarco, P. and Ussami, N., 2019. Electrical structure of the lithosphere from Rio de la Plata Craton to Paraná Basin: Amalgamation of cratonic and refertilized lithospheres in SW Gondwanaland. Tectonics, 38(1), pp.77-94.

Blake, S., Henry, T., Muller, M.R., Jones, A.G., Moore, J.P., Murray, J., Campanyà, J., Vozar, J., Walsh, J. and Rath, V., 2016. Understanding hydrothermal circulation patterns at a low-enthalpy thermal spring using audio-magnetotelluric data: A case study from Ireland. Journal of Applied Geophysics, 132, pp.1-16.

Egbert, G.D., Yang, B., Bedrosian, P.A., Key, K., Livelybrooks, D.W., Schultz, A., Kelbert, A. and Parris, B., 2022. Fluid transport and storage in the Cascadia forearc influenced by overriding plate lithology. Nature Geoscience, pp.1-6.

Yang, B., Egbert, G.D., Zhang, H., Meqbel, N. and Hu, X., 2021. Electrical resistivity imaging of continental United States from three-dimensional inversion of EarthScope USArray magnetotelluric data. Earth and Planetary Science Letters, 576, p.117244.

Jiang, W., Duan, J., Doublier, M., Clark, A., Schofield, A., Brodie, R.C. and Goodwin, J., 2022. Application of multiscale magnetotelluric data to mineral exploration: an example from the east Tennant region, Northern Australia. Geophysical Journal International, 229(3), pp.1628-1645.